翻訳と辞書
Words near each other
・ Hyperthaema caroei
・ Hyperthaema coccinata
・ Hyperthaema elysiusa
・ Hyperthaema haemacta
・ Hyperphas
・ Hyperphenylalaninemia
・ Hyperphosphatasia with mental retardation syndrome
・ Hyperphosphatemia
・ Hyperphosphorylation
・ Hyperphyscia
・ HyperPhysics
・ Hyperpigmentation
・ Hyperpilosity
・ Hyperpituitarism
・ Hyperplane
Hyperplane at infinity
・ Hyperplane section
・ Hyperplane separation theorem
・ Hyperplasia
・ Hyperplastic arteriolosclerosis
・ Hyperplatys
・ Hyperplatys argentinus
・ Hyperplatys argus
・ Hyperplatys aspersa
・ Hyperplatys californica
・ Hyperplatys cana
・ Hyperplatys femoralis
・ Hyperplatys griseomaculata
・ Hyperplatys maculata
・ Hyperplatys montana


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hyperplane at infinity : ウィキペディア英語版
Hyperplane at infinity
In geometry, any hyperplane ''H'' of a projective space ''P'' may be taken as a hyperplane at infinity. Then the set complement is called an affine space. For instance, if are homogeneous coordinates for ''n''-dimensional projective space, then the equation defines a hyperplane at infinity for the ''n''-dimensional affine space with coordinates . ''H'' is also called the ideal hyperplane.
Similarly, starting from an affine space ''A'', every class of parallel lines can be associated with a point at infinity. The union over all classes of parallels constitute the points of the hyperplane at infinity. Adjoining the points of this hyperplane (called ideal points) to ''A'' converts it into an ''n''-dimensional projective space, such as the real projective space .
By adding these ideal points, the entire affine space ''A'' is completed to a projective space ''P'', which may be called the projective completion of ''A''. Each affine subspace ''S'' of ''A'' is completed to a projective subspace of ''P'' by adding to ''S'' all the ideal points corresponding to the directions of the lines contained in ''S''. The resulting projective subspaces are often called ''affine subspaces'' of the projective space ''P'', as opposed to the infinite or ideal subspaces, which are the subspaces of the hyperplane at infinity (however, they are projective spaces, not affine spaces).
In the projective space, each projective subspace of dimension ''k'' intersects the ideal hyperplane in a projective subspace "at infinity" whose dimension is .
A pair of non-parallel affine hyperplanes intersect at an affine subspace of dimension , but a parallel pair of affine hyperplanes intersect at a projective subspace of the ideal hyperplane (the intersection ''lies on'' the ideal hyperplane). Thus, parallel hyperplanes, which did not meet in the affine space, intersect in the projective completion due to the addition of the hyperplane at infinity.
==See also==
* Line at infinity
* Plane at infinity
==References==

* Albrecht Beutelspacher & Ute Rosenbaum (1998) ''Projective Geometry: From Foundations to Applications'', p 27, Cambridge University Press ISBN 0-521-48277-1 .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hyperplane at infinity」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.